Variable time step smoothing filter

Marijn Tamis

May 21, 2014
Quick smoothing

- Camera movement
- Analog input smoothing
- Etc.
Naive algorithm

Fixed time step algorithm

```c
float c = 0.5f;
v2 = c * v1 + (1.0f-c) * vt;
```
Naive algorithm

Fixed time step algorithm formula

\[v_2 = v_1 c + v_t (1 - c) \]

- \(v_1 \) is the current value.
- \(v_2 \) is the value next frame.
- \(v_t \) is the target value we are approaching.
- Smoothing response determined by \(c \).
- Note that \(\Delta t \) is not used.
Naive algorithm

Naive algorithm plot

Marijn Tamis

Variable Δt filter
Variable time step algorithm

- Naive algorithm calculates exponential decay in fixed steps
- We need a function to calculate exponential decay with the same decay rate

Exponential decay

\[
e^{-\lambda \Delta t_f} = c
\]

\[
\ln \left(e^{-\lambda \Delta t_f} \right) = \ln (c)
\]

\[
-\lambda \Delta t_f = \ln (c)
\]

\[
-\lambda = \frac{\ln (c)}{\Delta t_f}
\]

Note: \(\Delta t_f \) is the delta time for the fixed frame rate algorithm
Variable time step algorithm

\[v_2 = v_1 \left(e^{-\lambda \Delta t} \right) + v_t \left(1 - e^{-\lambda \Delta t} \right) \]

Fixed time step algorithm

\[v_2 = v_1 c + v_t (1 - c) \]
Exponential decay plot
Comparison

Marijn Tamis
Variable Δt filter
Comparison

Marijn Tamis
Variable Δt filter
Uses

- Smooth everything that can be linearly interpolated.
- Real-time camera smoothing without splines.
- Filtering without latency or converting to frequency domain.
- Low-pass filters with infinite impulse response.
- High-pass filters / edge detection.
- Simulating capacitors / RC circuit.
- Simulating radioactive decay.
- Motion blur.
Properties

- No memory buffers needed, just 1 sample.
- No latency as we don’t use future values.
- Infinite impulse response.
- Input set can be filtered by touching each element only once.
- Not separable, so not very usable for 2D blurring.
Low pass filter

\[V_{in} \rightarrow R \rightarrow C \rightarrow V_{out} \]
Low pass filter

Marijn Tamis

Variable Δt filter
Low pass filter

Capacitor discharge voltage

\[V_C = V_0 e^{-\frac{t}{RC}} \]

RC low-pass filter cutoff frequency

\[f_c = \frac{1}{2\pi RC} \]
Low pass filter

Capacitor discharge voltage

\[V_C = V_0 e^{\frac{-t}{RC}} \]

Our RC

\[e^{-\lambda \Delta t} = c \]
\[e^{\frac{-\Delta t}{\lambda - 1}} = c \]
\[RC = \lambda^{-1} \]
Low pass filter

RC low-pass filter cutoff frequency

\[f_c = \frac{1}{2\pi RC} \]

Our cutoff

\[f_c = \frac{1}{2\pi \lambda^{-1}} \]

\[f_c = \frac{\lambda}{2\pi} \]